skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sabnis, Anirudh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A similarity cache can reply to a query for an object with similar objects stored locally. In some applications of similarity caches, queries and objects are naturally repre- sented as points in a continuous space. This is for example the case of 360◦ videos where user’s head orientation—expressed in spherical coordinates—determines what part of the video needs to be retrieved, or of recommendation systems where a metric learning technique is used to embed the objects in a finite dimensional space with an opportune distance to capture content dissimilarity. Existing similarity caching policies are simple modifications of classic policies like LRU, LFU, and qLRU and ignore the continuous nature of the space where objects are embedded. In this paper, we propose GRADES, a new similarity caching policy that uses gradient descent to navigate the continuous space and find appropriate objects to store in the cache. We provide theoretical convergence guarantees and show GRADES increases the similarity of the objects served by the cache in both applications mentioned above. 
    more » « less
  2. Traces from production caching systems of users accessing con- tent are seldom made available to the public as they are considered private and proprietary. The dearth of realistic trace data makes it difficult for system designers and researchers to test and validate new caching algorithms and architectures. To address this key problem, we present TRAGEN, a tool that can generate a synthetic trace that is “similar” to an original trace from the production system in the sense that the two traces would result in similar hit rates in a cache simulation. We validate TRAGEN by first proving that the synthetic trace is similar to the original trace for caches of arbitrary size when the Least-Recently-Used (LRU) policy is used. Next, we empirically validate the similarity of the synthetic trace and original trace for caches that use a broad set of commonly-used caching policies that include LRU, SLRU, FIFO, RANDOM, MARKERS, CLOCK and PLRU. For our empirical validation, we use original request traces drawn from four different traffic classes from the world’s largest CDN, each trace consisting of hundreds of millions of requests for tens of millions of objects. TRAGEN is publicly available and can be used to generate synthetic traces that are similar to actual pro- duction traces for a number of traffic classes such as videos, social media, web, and software downloads. Since the synthetic traces are similar to the original production ones, cache simulations performed using the synthetic traces will yield similar results to what might be attained in a production setting, making TRAGEN a key tool for cache system developers and researchers. 
    more » « less
  3. null (Ed.)
    A similarity cache can reply to a query for an object with similar objects stored locally. In some applications of similarity caches, queries and objects are naturally represented as pointsinacontinuousspace.Examplesinclude360◦ videoswhere user’s head orientation—expressed in spherical coordinates— determines what part of the video needs to be retrieved, and recommendation systems where the objects are embedded in a finite-dimensional space with a distance metric to capture content dissimilarity. Existing similarity caching policies are simple modifications of classic policies like LRU, LFU, and qLRU and ignore the continuous nature of the space where objects are embedded. In this paper, we propose GRADES, a new similarity caching policy that uses gradient descent to navigate the continuous space and find the optimal objects to store in the cache. We provide theoretical convergence guarantees and show GRADES increases the similarity of the objects served by the cache in both applications mentioned above. 
    more » « less